FRP-RC Beam in Shear: Mechanical Model and Assessment Procedure for Pseudo-Ductile Behavior
نویسندگان
چکیده
This work deals with the development of a mechanics-based shear model for reinforced concrete (RC) elements strengthened in shear with fiber-reinforced polymer (FRP) and a design/assessment procedure capable of predicting the failure sequence of resisting elements: the yielding of existing transverse steel ties and the debonding of FRP sheets/strips, while checking the corresponding compressive stress in concrete. The research aims at the definition of an accurate capacity equation, consistent with the requirement of the pseudo-ductile shear behavior of structural elements, that is, transverse steel ties yield before FRP debonding and concrete crushing. For the purpose of validating the proposed model, an extended parametric study and a comparison against experimental results have been conducted: it is proven that the common accepted rule of assuming the shear capacity of RC members strengthened in shear with FRP as the sum of the maximum contribution of both FRP and stirrups can lead to an unsafe overestimation of the shear capacity. This issue has been pointed out by some authors, when comparing experimental shear capacity values with the theoretical ones, but without giving a convincing explanation of that. In this sense, the proposed model represents also a valid instrument to better understand the mechanical behavior of FRP-RC beams in shear and to calculate their actual shear capacity.
منابع مشابه
Forecasting of Shear Strength of Concrete Beam Reinforced with FRP Bar
This study develops a new approach for forecasting shear Strength of concrete beam without stirrups based on the artificial neural networks (ANN). Proposed ANN considers geometric and mechanical properties of cross section and FRP bars, and shear span-depth ratio. The ANN model is constructed from a set of experimental database available in the past literature. Efficiency of the ANN model was c...
متن کاملAn Experimental Study on Shear Strengthening of RC Lightweight Deep Beams Using CFRP
. This paper presents the results of an experimental investigation on shear strength enhancement of reinforced concrete deep beams externally reinforced with fiber reinforced polymer (FRP) composites. A total of six deep beam specimens of two different classes, as-built (unstrengthened) and retrofitted were tested in the experimental evaluation program. Two composite systems namely carbon/epoxy...
متن کاملStrut-and-Tie Method for Prediction of Ultimate Shear Capacity of Shear-Strengthened RC deep beams with FRP
The main objective of this study is to propose the Strut-and-Tie method (STM) to predict the shear capacity of simply supported RC deep beams shear-strengthened with carbon fiber reinforced polymers (CFRP). It is assumed that, the total carried shear force by shear-strengthened RC deep beam provided by three independent resistance, namely diagonal concrete strut due to Strut-and-tie mechanism, ...
متن کاملAnalysis of Masonry Infill Panels Retrofitted with FRP Sheets in R/C Frames
Masonry infill walls are often used as non-structural elements. According to the past structural failure, ignorance of interaction between infill walls and enclosed frame may lead to the different seismic response for non-ductile building frames. The main contribution of this paper is to analytically investigate the behavior of reinforced concrete with masonry infill panels as participating str...
متن کاملAN OPTIMIZATION PROCEDURE FOR CONCRETE BEAM-COLUMN JOINTS STRENGTHENED WITH FRP
This paper illustrates an optimization procedure of concrete beam-column joints subjected to shear that are strengthened with fiber reinforced polymer (FRP). For this aim, five different values have been considered for length, width and thickness of the FRP sheets which created 125 different models to strengthen of concrete beam-column joints. However, by using response surface methodology (RSM...
متن کامل